Invariance of Conjunctions of Polynomial Equalities for Algebraic Differential Equations

نویسندگان

  • Khalil Ghorbal
  • Andrew Sogokon
  • André Platzer
چکیده

In this paper we seek to provide greater automation for formal deductive verification tools working with continuous and hybrid dynamical systems. We present an efficient procedure to check invariance of conjunctions of polynomial equalities under the flow of polynomial ordinary differential equations. The procedure is based on a necessary and sufficient condition that characterizes invariant conjunctions of polynomial equalities. We contrast this approach to an alternative one which combines fast and sufficient (but not necessary) conditions using differential cuts for soundly restricting the system evolution domain.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hierarchy of Proof Rules for Checking Differential Invariance of Algebraic Sets

This paper presents a theoretical and experimental comparison of sound proof rules for proving invariance of algebraic sets, that is, sets satisfying polynomial equalities, under the flow of polynomial ordinary differential equations. Problems of this nature arise in formal verification of continuous and hybrid dynamical systems, where there is an increasing need for methods to expedite formal ...

متن کامل

A hierarchy of proof rules for checking positive invariance of algebraic and semi-algebraic sets

This paper studies sound proof rules for checking positive invariance of algebraic and semi-algebraic sets, that is, sets satisfying polynomial equalities and those satisfying finite boolean combinations of polynomial equalities and inequalities, under the flow of polynomial ordinary differential equations. Problems of this nature arise in formal verification of continuous and hybrid dynamical ...

متن کامل

NUMERICAL SOLUTION OF THE MOST GENERAL NONLINEAR FREDHOLM INTEGRO-DIFFERENTIAL-DIFFERENCE EQUATIONS BY USING TAYLOR POLYNOMIAL APPROACH

In this study, a Taylor method is developed for numerically solving the high-order most general nonlinear Fredholm integro-differential-difference equations in terms of Taylor expansions. The method is based on transferring the equation and conditions into the matrix equations which leads to solve a system of nonlinear algebraic equations with the unknown Taylor coefficients. Also, we test the ...

متن کامل

Nonlinear Bending Analysis of Sector Graphene Sheet Embedded in Elastic Matrix Based on Nonlocal Continuum Mechanics

The nonlinear bending behavior of sector graphene sheets is studied subjected to uniform transverse loads resting on a Winkler-Pasternak elastic foundation using the nonlocal elasticity theory. Considering the nonlocal differential constitutive relations of Eringen theory based on first order shear deformation theory and using the von-Karman strain field, the equilibrium partial differential eq...

متن کامل

Comparative study on solving fractional differential equations via shifted Jacobi collocation method

In this paper, operational matrices of Riemann-Liouville fractional integration and Caputo fractional differentiation for shifted Jacobi polynomials are considered. Using the given initial conditions, we transform the fractional differential equation (FDE) into a modified fractional differential equation with zero initial conditions. Next, all the existing functions in modified differential equ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014